Locality of Connective Constants, I. Transitive Graphs

نویسندگان

  • GEOFFREY R. GRIMMETT
  • ZHONGYANG LI
چکیده

The connective constant μ(G) of a quasi-transitive graph G is the exponential growth rate of the number of self-avoiding walks from a given origin. We prove a locality theorem for connective constants, namely, that the connective constants of two graphs are close in value whenever the graphs agree on a large ball around the origin. The proof exploits a generalized bridge decomposition of self-avoiding walks, which is valid subject to the assumption that the underlying graph is quasi-transitive and possesses a so-called graph height function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locality of Connective Constants, Ii. Cayley Graphs

The connective constant μ(G) of an infinite transitive graph G is the exponential growth rate of the number of self-avoiding walks from a given origin. In earlier work of Grimmett and Li, a locality theorem was proved for connective constants, namely, that the connective constants of two graphs are close in value whenever the graphs agree on a large ball around the origin. A condition of the th...

متن کامل

Self-avoiding Walks and Connective Constants

The connective constant μ(G) of a quasi-transitive graph G is the asymptotic growth rate of the number of selfavoiding walks (SAWs) on G from a given starting vertex. We survey several aspects of the relationship between the connective constant and the underlying graph G. • We present upper and lower bounds for μ in terms of the vertex-degree and girth of a transitive graph. • We discuss the qu...

متن کامل

Pairs of graphs with connective constants and critical probabilities in the same order

We give examples of pairs of planar, quasi-transitive graphs with connective constants and critical probabilities in the same order.

متن کامل

Strict Inequalities for Connective Constants of Transitive Graphs

The connective constant of a graph is the exponential growth rate of the number of self-avoiding walks starting at a given vertex. Strict inequalities are proved for connective constants of vertex-transitive graphs. First, the connective constant decreases strictly when the graph is replaced by a nontrivial quotient graph. Second, the connective constant increases strictly when a quasitransitiv...

متن کامل

Bounds on connective constants of regular graphs

Bounds are proved for the connective constant μ of an infinite, connected, ∆-regular graph G. The main result is that μ ≥ √ ∆− 1 if G is vertex-transitive and simple. This inequality is proved subject to weaker conditions under which it is sharp.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014